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ABSTRACT

This work examines the level of discretization error in simulation-based aerodynamic
databases and introduces strategies for error control. Simulations are perfomied using a
parallel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretiza
tion errors in user-selected outputs are estimated using the method of adjoint-weighted
residuals and we use adaptive mesh refinement to reduce these errors to specified toy
erances. Using this framework, we examine the behavior of discretization error
throughout a token database computed for a NACA 0012 airfoil consisting of 120
cases. We compare the cost and accuracy of two approaches for aerodynamic database
generation. In the first approach, mesh adaptation is used to compute all cases in the
database to a prescribed level of accuracy. The second approach conducts all simula-
tions using the same computational mesh without adaptation. We quantitatively assess
the error landscape and computational costs in both databases. This investigation high-
lights sensitivities of the database under a variety of conditions. The presence of tran-
sonic shocks or the stiffness in the governing equations near the incompressible limit
are shown to dramatically increase discretization error requiring additional mesh rest}
lution to control. Results show that such pathologies lead to error levels that vary by
over factor of 40 when using a fixed mesh throughout the database. Alternatively, cot+
trolling  this sensitivity through mesh adaptation leads to mesh sizes which span two
orders of magnitude. We propose strategies to minimize simulation cost in sensitive
regions and discuss the role of error-estimation in database quality.

INTRODUCTION

The shift to multi-core CPU architectures has rapidly accelerated the growth of sir
percomputing resources [1]. This marked increase in the level of high-performance

I Michael J. Aftosmis, NASA Ames Research Center, Mail Stop T-2713, Moffett Field, CA
94035, USA

2 Marian Nemec, ELORET Corp., Mail Stop T-2713, Moffett Field, CA 94035, USA



Proceedings ofthe 21"International Conference on Parallel Computatial Fluid Lhwamics 	 Mav 18-22 MojjettField, CA, USA

computing now offers both unprecedented capability and capacity to the aerodynamic
simulation community [2]. These systems are capable of aerodynamic simulations with
10 8-10 10 degrees of freedom, offering ever increasing physical fidelity [3,4]. While
such extremely large "capability" simulations are becoming commonplace, the engi-
neering community has focused on the enormous capacity of these systems through an
increasing reliance on parametric, trade and optimization studies. In industrial settings,
the main role of high-end computing is performance database generation. Aerody-
namic databases with 10 3-104 simulations have become common and "production
CFD" is the mainstay of the workload on this hardware.

The quality of these databases hinges on the level of the discretization error associ-
ated with the simulation outputs. Simply put, how much does the mesh influence the
results? In this work, we use the method of adjoint-weighed residuals to estimate the
discretization error in each simulation and examine the resulting error distribution.
Adaptive mesh refinement is used for error control in each case of the database. These
investigations use the parallel multi-level Cartesian Euler solver developed in refer-
ences [5] and [6] to produce the aerodynamic data. This simulation package has been
used extensively on large shared and distributed memory systems and has very good
parallel scaability [2,3,7]. The robustness and automation of this simulation package
has led to its wide adoption for producing aerodynamic databases in support of engi-
neering analysis and design [8,9,10,11 ].

The use of adjoint-based error-estimates and adaptive mesh refinement in database
constriction increases the computational cost of each data point because several flow
and adjoint solutions are required to generate a mesh that satisfies the user-specified
output tolerances. The adjoint-solver, sensitivity calculation, and error-estimator all use
the same parallel, multilevel framework as the base Euler solver and all achieve the
same high level of parallel efficiency [12,13,14].

In addition to adaptively meshing a simulation, the error-estimation module can
also be used in a single-pass mode to assess the error in a specific functional on a given
input mesh. Provided that the Euler simulation on this mesh is sufficiently good, this
method allows us to accurately assess the discretization-error in a specific output on a
particular mesh. This approach can be applied to each simulation in an aerodynamic
database, yielding an a posteriori estimate of the error landscape for that database.

Our investigations employ both of these techniques to investigate the role of discre
tization error in simulation-based aerodynamic data. We begin by briefly reviewing the
salient features of adjoint-error estimation using a discrete adjoint solver. We then pre
sent both fixed-mesh and error-controlled databases for a token geometry in inconr
pressible, transonic and supersonic flow. Our analysis tracks both error and cost in
these databases and aims to quantitatively understand the implications of both strate
gies.
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Figure 1. Convergence of functional J with mesh refinement showing the definition of total
error ; E (left) and relative error, e (right).

ERROR ASSESSMENT AND ESTIMATION

Figure 1 shows two sketches showing convergence of a typical aerodynamic output
(CL, CD, etc.) with mesh refinement. In the sketch at the left of figure 1,E is the total
error in this output due to discretization-error in the numerical solution. This error is
defined as the difference between the exact fiinctional value,J, and the value obtained
when evaluating this functional using the discrete solution on the current mesh,J(UH).

Rather than attempt to compute E directly, we follow the approach of Ref. [16], and
consider instead the simpler problem of estimating how our discrete evaluationJ(UH)
would change if we solved on a finer mesh, h. The relative error, e, is sketched at the
right of figure 1, and is defined as the difference between the functional evaluations on
the current mesh, H, and the finer, embedded mesh h.

e = I J( UH) — J( Uh) 1	 (1)

For a second-order method on a sufficiently smooth solution in the asymptotic
range, knowing the relative error gives the total error in the output.

1	 1	 4E=e+4e+42e+... = 3e	 (2)

Of course, knowledge of the relative error hinges on our ability to evaluate the
functional on the fine mesh solution,J((,,'J,). In [12] and [14] we circumvent this diffi-
culty by approximating the output on the embedded mesh as a fiinction of the coarse
mesh flow and adjoint solutions.

	

J(Uh) J(UjH) — (^1H) T R•( UtH) — (4^h — 4^'h ) T R(UtH)	 (3)
Adjoint Correction	 Remaining Error

Where R( ) is the spatial operator of the Euler solver, ip, is the discrete adjoint so-
lution and the notation ( )H is used to indicate prolongation from the coarser to finer
mesh.



M.

0.1

0.2

0.3

0.5

0.7

0.9

1.1

1.2

1.4

1.6

2.0

3.0

	

Proceedings ofthe 21"International Conference on Parallel Computatial Fluid Ihnarnics 	 Mar 18-22 Moffett Field, CA, USA

References [12] [13] and [15] contain fiill details of the implementation, and den,
onstrate the order of convergence of both the adjoint correction and the remaining er-
ror terms. In the current work, the remaining error term in eq.(3) is computed by differ-
encing the linear and quadratic prolongations of the adjoint solution. Earlier publicam
tions contain detailed verification exercises demonstrating that this fornzulation
achieves its designed mesh-convergence rate for both the adjoint-correction and the
remaining-error terms [12, 15].

CONSTANT ERROR DATABASE

As a baseline for investigating the role of discretization error in simulation-based
aero-data, we start by computing an aerodynamic database to a fixed error-tolerance.
Our prototype is a simple Mach-a sweep over a NACA 0012 airfoil in 2D. In an effort
to examine discretization-error and meshing requirements over a wide range of phys-
ics, our parametric space covers 12 Mach numbers from low subsonic to moderate sit-
personic, lW,, = {0.1-3.0}, and 10 different angles-of-attack in the range 10°-12 °1. Fig
ure 2 illustrates the extent of this Mach-a space with inset figures (shaded by local
Mach number) to illustrate flow in various regimes.

For this study, the objective function was chosen to be a simple unweighted sum of
lift and drag on the airfoil.

	

J(UH) = C + Cd	 (4)

Figure 2: Mach-a wind-space covered by a prototypical aero-database showing examples of flow in
various flight regimes. (12 Mach numbers) x (10 incidence angles) = 120 simulations in the database,
Mach contours shown for selected cases.
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Angle-of-attack, a= {0°, 0.1°, 0.5°, 1°, 2°, 4°, 6°, 8°, 10°, 12°1
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Figiire 3: Sample computational meshes in the Mach-(x database for NACA 0012 airfoil produced by
adjoint-based adaptive mesh refinement to control discretization level in functional J = 0 + Cd.

Initial mesh with 980 cells shown on left. Final meshes had from 10 3 -10 5 cells.

Aerodynamic Coefficients

To control discretization-error to a fixed value, every cases in the database was run
adaptively until the estimate of the remaining-error term in eq.(3) was less than 0.008.
With the functional in eq.(4), this tolerance translates to 80 counts of drag at zero-lift.
Figure 3 shows samples of the final meshes required to achieve this tolerance at vary
ous points in the database. This error tolerance was purposely chosen relatively loose
since we hope to be able to achieve it over a wide range of flow conditions.

Figure 4 shows simulation results for this database through plots of lift, drag and
moment versus alpha for each Mach number. Reassuringly, these data collapse near the
incompressible limit, and shock-free inviscid flow shows zero drag for all a. More
generally, Cl and C„ behave linearly where expected, while Cyr seems to behave nearly
quadratically. This presentation, however, actually masks the major sensitivities. To see
this more clearly, figure 5 shows performance landscapes of  and C now plotted as a
function of both a and Mach number. While the variation with angle-of-attack is gen-
erally linear or quadratic, variation with Mach number is much more radical. In this
view, the steepness of the carpets imply rapid change in the coefficient with either

Figalre 4: Lift, drag, and quarter-chord pitch-moment for aero-database in figures 2 & 3.
All cases computed to constant-error tolerance of 0.008 on the approximation of the
remaining-error in the functional J = Cl + Cd.
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1.5

Figure 5: Performance landscapes of Cl & Cd. Steepness of the carpet indicates  output sensitiv-
ity. All cases computed to constant-error tolerance of 0.008 on the approximation of the
remaining-error in the functional J = Cl + Cd.

Mach number or a. The response in either output (Cl or Cd) to changes in the flow
(Mach or alpha) is precisely the definition of output sensitivity.

Discretization Error and Resolution Requirements

While figures 4 & 5 show the primary aerodynamic data, figure 6 contains the central
results for our current investigation of the error landscape. This figure shows quantita-
tive measures of solution quality and cost. At the left of figure 6, we plot the magnitude
of the remaining-error tem7 in eq.(3) at each Mach number in the database as a func-
tion of angle-of-attack. The plot at the right shows the number of cells required to
achieve this error level also as a function ofJW., and a.

Figure 6 shows the level of remaining error in all the simulations in the database.
Our error tolerance of 0.008 appears as a shaded (yellow) plane in Mach- space. In
examining these data we note that all but one case (Nh = 0.5, a = 12°) in the database
met the error tolerance. Moreover, we see that the adaptive scheme controlled
discretization-error so that the carpet of remaining error forms a relatively flat surface
clustered in a narrow band from 0.005 to 0.008. The flatness of this surface is a meas-
ure of control.

Figure 6: (Left) Remaining-error and (right) number-of-cells carpets for constant-error aero-
database. Shaded plane (yellow) on left shows the error tolerance of 0.008 on functional J = Cl + Cd.

All but one case achieved the tolerance on remaining-error.
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Figure 7: Confinement of domain in supersonic regime. In supersonic flow, mesh adaptation is con-
fined to regions behind the bow shock and in front of the limiting characteristic since the remaining
error term in eq.(3) is zero ahead of the bow shock (R(UJ,) = 0) and downstream of limiting charac-

teristic, the output functional has no sensitivity to changes in the flow (V)h = 0).

The carpet plot at the right of figure 6 shows the cell-counts used to achieve this
level of error. This plot shows a clear division between the subsonic and supersonic
cases which appears as a sharp step-down in the cell-count carpet located just before
Mach 1. The supersonic cases generally achieved the desired level of error with over
an order of magnitude fewer cells than the subsonic cases. In the subsonic regime, the
resolution requirements increase with angle-of-attack and we see increasing Mach
number dependencies approaching the incompressible limit and through the transonic
regime.

Figure 7 addresses the disparity in cell-counts between the subsonic and supersonic
cases. The elliptic nature of subsonic flow means that every point in the domain has the
potential to influence in our surface functional J = Ct + Cd. Since the entire domain
plays a role, mesh adaptation can extend far upstream or downstream. In supersonic
flow, however, the domain becomes sharply confined. Upstream of the bow shock,

Uh = U. and since U. satisfies the governing equations, R(Uh) = 0. Similarly,
downstream of the limiting characteristic, changes in the flow field cannot effect
quantities on the body's surface and thus the adjoint variable is zero. Since the re-
maining error term in eq.(3) is formed by an inner product between the adjoint vari-
ables and the primal residuals, these zeros confine mesh enrichment to a small re-
gion of the domain between the bow shock and the limiting characteristic. Similar
observations were made in ref [ 14] when discussing figures 9 and 24. This confine-
ment dramatically limits the problem size in supersonic flow. Moreover, as the Mach
number increases, this "refinement diamond" contracts in the cross-flow direction and
the cell count drops with the area change (volume change in three-dimensions).

In the transonic regime, resolution requirements are driven by the functional's d&
pendence on the precise location of the upper surface shock. Since the shock's position
is only known to within a cell, accurate shock placement demands fine mesh cells. As
a result, the simulations at Mach 0.7 are among the most cell-intensive in the database.
By Mach 0.9 the shocks are attached to the trailing-edge, shock location is unambigll-
ous, and these cases are easy by comparison.



dp = 0.000120700 cells ry.

V. = 0.2

^1`

= 0.0004

--1

= 0.0009

Proceedings ojthe 21"International Conference on Parallel Computatial Fluid Dynamics
	

May 18-22 Moffett Field, CA, USA

a=4°	 U =0.1	 -

Figure 8: Final meshes and isobars in discrete solutions required to achieve an error-
tolerance of 0.008 on functional J= CI + CD in near-incompressible flow. M., = {0. 1, 0.2,
0.31 and a= 4°.

While cell-counts in the trans- and supersonic regimes are driven by flow physics,
near the incompressible limit they are driven by our model of the governing equations.
These simulations were preformed using the compressible form of the governing equa-
tions without any low-Mach preconditioning. Near the incompressible limit, the pres-
sure coefficient becomes independent of Mach number giving rise to the well-known
1/V2 incompressible scaling. Figure 8 shows isobars in the discrete solution for the
three lowest Mach numbers. Isobar levels atllda of 0.1, 0.2 and 0.3 have been chosen
to illustrate the approach to self-similarity in these nearly incompressible flows. Pres-
sure signals at Vf = 0.1 are 9 times weaker than their counterparts at:ll,, = 0.3 in ac-
cordance with the inverse Mach-squared scaling. This represents nearly a 10 fold de-
crease in signal strength and therefore meeting the same error-tolerance on the aerody
namic coefficients requires correspondingly higher mesh resolution. This stiffness is
simply an artifact of solving the un-pre conditioned governing equations and the fact
that our functional is based upon coefficients which depend onq^.
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Figm-e 9: Computational mesh with --7000
cells used for all cases in the fixed-mesh data-	 Figure 10: Drag in database computed on fix

base.	 mesh. Inset shows poor prediction of drag at
Mach near a = 0.

CONSTANT MESH DATABASE

In contrast to the adaptively refined meshes in the preceding section, we now ex-

amine a database computed on a fixed computational mesh. Figure 9 shows a mesh
with --7000 control volumes. This mesh is similar in cell-density and cell-count to
some of the adaptive meshes found at moderate subsonic Mach numbers (see fig 3.)
and is representative of a "best practices" mesh for this airfoil. Using the same mesh
for all simulations in a database is common practice in production CFD making it in+
portant to understand the implications of this approach in terms of data quality and dis.
cretization error. This fixed-mesh database used the same computational mesh for all
120 simulations in the database. Figure 10 shows the prediction of drag across the en-
tire database as a function of angle-of-attack for all Mach numbers. In comparing these
results with those in Fig. 4 we notice immediately the poor prediction in the subsonic
regime at low incidence angles. Spurious drag in this region increases as the flow b&
comes more incompressible, and increases with a. Given the earlier discussion of flow
sensitivity in this regime, these results are hardly surprising, but the quantification is
illustrative. In shock-free flow, inviscid flow theory predicts zero drag for this airfoil.
Instead, Fig. 10 shows finite drag for all these cases — with results nicely sorted with the

Figure 11: Performance landscapes of Cl & Cd for database computed on a fixed mesh with ---7000
control volumes. Note poor prediction of drag in subsonic shock-free flow. Symbol color indicates
level of remaining-error in simulations relative to tolerance of 0.008 on on functional J = CI, + CD.
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remaining-error in the
simulations. Red symbols mark cases with error at least 50% in excess of our 0.008
tolerance onJ= G + Cd, and virtually all of the subsonic cases are red.

Figure 12 gives a more quantitative understanding of the error-landscape for the
constant-mesh database. To facilitate comparison, these data are plotted using the same
scale as the error-carpet in the error-controlled database (fig. 6). The yellow plane in
fig. 12 shows the tolerance of 0.008 on J The undersolved simulations (red symbols)
are above this plane, while the oversolved ones (blue symbols) lie below. White syrnr
bols designate cases that lie within 50% of our desired error tolerance. In general the
cases meet or exceed the error tolerance at Mach 0.9 and above. Although all cases
were computed on the same mesh, the remaining-error data in fig. 12 vary from 0.016
to 0.06. This means that there is a factor of 40 difference in accuracy of our lift and
drag fiinctional between the best and worst cases in the database. In general we ob-
serve that the subsonic cases have 5-10 times more error than the supersonic cases, and
that the errors are worse in regions of the domain where we the governing equations
are stiff (transonic regime and near the incompressible limit).

This last observation underscores the duality between meshing requirements and
discretization error. Figure 13 clarifies fiirther. On the left is the "meshing require-
ments" carpet plot from the error-controlled database replotted from figure 5. On the
right, we replot the error carpet from the fixed-mesh database in figure 12, only this
time, using a logarithmic scale on the vertical axis. Comparing the two reveals remark-
able similarities. We see that the cases with the highest error on the fixed mesh are ex-
actly the same as those which the adjoint has identified as having the most stringent
meshing requirements. Cases with high sensitivity have both high meshing require-
ments and high-error when the fixed-mesh is used for their simulations. Of course, this
is not surprising, but we can now quantify the error range and realize that even for a
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Figure 13: Duality between meshing requirements in constant-mesh database and remaining error
landscape of constant-mesh database (log l o scale).

simple 2D airfoil, using a fixed mesh results in output error that spans nearly 2 orders
of magnitude. Conversely, attempting to control this error, even in 213, requires meshes
with with cell-counts that vary over two orders of magnitude (1600-200000 cells).

As discussed earlier, cell-counts near the incompressible limit are driven by the
inverse Mach-squared incompressible scaling. Cell-counts in the transonic range are
driven by the need to resolve the precise location of the shocks, and when this position
is only known to within one cell, h-refinement is the only meaningful way of improv-
ing it. In the high-Mach cases, the domain is substantially confined dramatically reduc-
ing meshing requirements, but a certain number of cells are still required to resolve the
shock and flowfield behind the shock.

ALTERNATIVE STRATEGIES

In many ways, blindly insisting that all cases in a database achieve a constant error
is hardly better than blindly applying the same mesh to all cases. Given the range of
cell-counts required to achieve constant error, the hardest few percent of cases will
completely dominate the computational cost of the database. In all likelihood a data-
base which truly has uniform error may not be demanded for engineering use. Trajec-
tory simulations, for example have their own set of sensitivities. Cases where the vehi-
cle is likely to spend the majority of its time generally require tighter error tolerances
than corners of the flight envelope that may never be reached. Under these circum-

stances, simply capping the maximum number of cells may be a useful technique for
avoiding the needless expense chasing precision in corners of the flight envelope
which are unimportant in trajectory simulations or for Guidance and Control system
development. On the other hand, its also interesting to consider a relative tolerance
where the functional's value is linked to its error tolerance.
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CONCLUSIONS AND FUTURE WORK

In order to examine the level of discretization error in simulation-based aerody
namic data, this work compared error levels in two aerodynamic databases using a par-
allel, multi-level Euler solver on embedded-boundary Cartesian meshes. Discretization
errors in user-selected outputs were estimated using the method of adjoint-weighted
residuals and adaptive mesh refinement was employed to reduce these errors to speci-
fied tolerances. Using this framework, the investigations examined the behavior of dis.
cretization error throughout a token database computed for a NACA 0012 airfoil corn
sisting of 120 cases. The accuracy and computational expense were compared for two
approaches for aerodynamic database generation. The first approach used mesh adapta
tion to produce an "error controlled" database where all cases in the database achieved
a prescribed level of accuracy. The second approach conducted all simulations using
the same computational mesh without adaptation. Error landscapes in both approaches
were quantitatively assessed along with the computational costs of both approaches.

This investigation highlighted the interplay between flow field sensitivity, discrete
zation error and meshing requirements. Aerodynamic coefficients in the error-
controlled databases demonstrated textbook behavior. However, it was also shown that
due to varying flow sensitivity, maintaining a constant error tolerance can require
widely disparate mesh sizes. The presence of transonic shocks or the stiffness in the
governing equations near the incompressible limit were shown to dramatically increase
discretization error requiring additional mesh resolution to control. Results show that
such pathologies lead to error levels that vary by over factor of 40 when using a fixed
mesh throughout the database. Alternatively, controlling this sensitivity through mesh
adaptation leads to mesh sizes which span two orders of magnitude.

We intend to repeat this study in 31) to understand and quantify the impact of di-
mensionality on both error levels and meshing requirements. Furthermore we intend to
examine the usefulness of capping cell-counts to control database cost and examine the
utility of relative error-tolerances as a middle-ground between accuracy and expense.
Clearly quantitative error estimates on simulation data are of great value and error-
estimates are reasonable expectation using techniques that are already available. The
dual nature of meshing requirements and discretization error implies that even in the
absence of mesh adaptation, the error estimates offered by the method of adjoint-
weighted residuals adjoint provides insight into both flow sensitivity and meshing r&
qurrements.
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